Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 26 - 50 of 54 results
26.

Strategies for site-specific recombination with high efficiency and precise spatiotemporal resolution.

blue near-infrared red UV Cryptochromes LOV domains Phytochromes UV receptors Review
J Biol Chem, 4 Mar 2021 DOI: 10.1016/j.jbc.2021.100509 Link to full text
Abstract: Site-specific recombinases (SSRs) are invaluable genome engineering tools that have enormously boosted our understanding of gene functions and cell lineage relationships in developmental biology, stem cell biology, regenerative medicine, and multiple diseases. However, the ever-increasing complexity of biomedical research requires the development of novel site-specific genetic recombination technologies that can manipulate genomic DNA with high efficiency and fine spatiotemporal control. Here, we review the latest innovative strategies of the commonly used Cre-loxP recombination system and its combinatorial strategies with other SSR systems. We also highlight recent progress with a focus on the new generation of chemical- and light-inducible genetic systems and discuss the merits and limitations of each new and established system. Finally, we provide the future perspectives of combining various recombination systems or improving well-established site-specific genetic tools to achieve more efficient and precise spatiotemporal genetic manipulation.
27.

Synthetic Biological Approaches for Optogenetics and Tools for Transcriptional Light‐Control in Bacteria.

blue cyan green near-infrared red UV violet BLUF domains Cobalamin-binding domains Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Adv Biol, 9 Feb 2021 DOI: 10.1002/adbi.202000256 Link to full text
Abstract: Light has become established as a tool not only to visualize and investigate but also to steer biological systems. This review starts by discussing the unique features that make light such an effective control input in biology. It then gives an overview of how light‐control came to progress, starting with photoactivatable compounds and leading up to current genetic implementations using optogenetic approaches. The review then zooms in on optogenetics, focusing on photosensitive proteins, which form the basis for optogenetic engineering using synthetic biological approaches. As the regulation of transcription provides a highly versatile means for steering diverse biological functions, the focus of this review then shifts to transcriptional light regulators, which are presented in the biotechnologically highly relevant model organism Escherichia coli.
28.

Steering Molecular Activity with Optogenetics: Recent Advances and Perspectives.

blue cyan green near-infrared red UV violet BLUF domains Cobalamin-binding domains Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Adv Biol, 14 Jan 2021 DOI: 10.1002/adbi.202000180 Link to full text
Abstract: Optogenetics utilizes photosensitive proteins to manipulate the localization and interaction of molecules in living cells. Because light can be rapidly switched and conveniently confined to the sub‐micrometer scale, optogenetics allows for controlling cellular events with an unprecedented resolution in time and space. The past decade has witnessed an enormous progress in the field of optogenetics within the biological sciences. The ever‐increasing amount of optogenetic tools, however, can overwhelm the selection of appropriate optogenetic strategies. Considering that each optogenetic tool may have a distinct mode of action, a comparative analysis of the current optogenetic toolbox can promote the further use of optogenetics, especially by researchers new to this field. This review provides such a compilation that highlights the spatiotemporal accuracy of current optogenetic systems. Recent advances of optogenetics in live cells and animal models are summarized, the emerging work that interlinks optogenetics with other research fields is presented, and exciting clinical and industrial efforts to employ optogenetic strategy toward disease intervention are reported.
29.

Constructing a Smartphone-Controlled Semiautomatic Theranostic System for Glucose Homeostasis in Diabetic Mice.

red BphS HEK293
Methods Mol Biol, 2021 DOI: 10.1007/978-1-0716-1441-9_9 Link to full text
Abstract: With the development of mobile communication technology, smartphones have been used in point-of-care technologies (POCTs) as an important part of telemedicine. Using a multidisciplinary design principle coupling electrical engineering, software development, synthetic biology, and optogenetics, the investigators developed a smartphone-controlled semiautomatic theranostic system that regulates blood glucose homeostasis in diabetic mice in an ultraremote-control manner. The present chapter describes how the investigators tailor-designed the implant architecture "HydrogeLED," which is capable of coharboring a designer-cell-carrying alginate hydrogel and wirelessly powered far-red light LEDs. Using diabetes mellitus as a model disease, the in vivo expression of insulin or human glucagon-like peptide 1 (shGLP-1) from HydrogeLED implants could be controlled not only by pre-set ECNU-TeleMed programs, but also by a custom-engineered Bluetooth-active glucometer in a semiautomatic and glycemia-dependent manner. As a result, blood glucose homeostasis was semiautomatically maintained in diabetic mice through the smartphone-controlled semiautomatic theranostic system. By combining digital signals with optogenetically engineered cells, the present study provides a new method for the integrated diagnosis and treatment of diseases.
30.

Constructing Smartphone-Controlled Optogenetic Switches in Mammalian Cells.

red BphS HEK293
Methods Mol Biol, 2021 DOI: 10.1007/978-1-0716-1441-9_8 Link to full text
Abstract: With the increasing indispensable role of smartphones in our daily lives, the mobile health care system coupled with embedded physical sensors and modern communication technologies make it an attractive technology for enabling the remote monitoring of an individual's health. Using a multidisciplinary design principle coupled with smart electronics, software, and optogenetics, the investigators constructed smartphone-controlled optogenetic switches to enable the ultraremote-control transgene expression. A custom-designed SmartController system was programmed to process wireless signals from smartphones, enabling the regulation of therapeutic outputs production by optically engineered cells via a far-red light (FRL)-responsive optogenetic interface. In the present study, the investigators describe the details of the protocols for constructing smartphone-controlled optogenetic switches, including the rational design of an FRL-triggered transgene expression circuit, the procedure for cell culture and transfection, the implementation of the smartphone-controlled far-red light-emitting diode (LED) module, and the reporter detection assay.
31.

Engineering Photosensory Modules of Non-Opsin-Based Optogenetic Actuators.

blue cyan near-infrared red violet Cryptochromes Fluorescent proteins LOV domains Phytochromes Review
Int J Mol Sci, 7 Sep 2020 DOI: 10.3390/ijms21186522 Link to full text
Abstract: Optogenetic (photo-responsive) actuators engineered from photoreceptors are widely used in various applications to study cell biology and tissue physiology. In the toolkit of optogenetic actuators, the key building blocks are genetically encodable light-sensitive proteins. Currently, most optogenetic photosensory modules are engineered from naturally-occurring photoreceptor proteins from bacteria, fungi, and plants. There is a growing demand for novel photosensory domains with improved optical properties and light-induced responses to satisfy the needs of a wider variety of studies in biological sciences. In this review, we focus on progress towards engineering of non-opsin-based photosensory domains, and their representative applications in cell biology and physiology. We summarize current knowledge of engineering of light-sensitive proteins including light-oxygen-voltage-sensing domain (LOV), cryptochrome (CRY2), phytochrome (PhyB and BphP), and fluorescent protein (FP)-based photosensitive domains (Dronpa and PhoCl).
32.

A non-invasive far-red light-induced split-Cre recombinase system for controllable genome engineering in mice.

blue red BphS CRY2/CIB1 HEK293 mouse in vivo Nucleic acid editing
Nat Commun, 24 Jul 2020 DOI: 10.1038/s41467-020-17530-9 Link to full text
Abstract: The Cre-loxP recombination system is a powerful tool for genetic manipulation. However, there are widely recognized limitations with chemically inducible Cre-loxP systems, and the UV and blue-light induced systems have phototoxicity and minimal capacity for deep tissue penetration. Here, we develop a far-red light-induced split Cre-loxP system (FISC system) based on a bacteriophytochrome optogenetic system and split-Cre recombinase, enabling optogenetical regulation of genome engineering in vivo solely by utilizing a far-red light (FRL). The FISC system exhibits low background and no detectable photocytotoxicity, while offering efficient FRL-induced DNA recombination. Our in vivo studies showcase the strong organ-penetration capacity of FISC system, markedly outperforming two blue-light-based Cre systems for recombination induction in the liver. Demonstrating its strong clinical relevance, we successfully deploy a FISC system using adeno-associated virus (AAV) delivery. Thus, the FISC system expands the optogenetic toolbox for DNA recombination to achieve spatiotemporally controlled, non-invasive genome engineering in living systems.
33.

Optogenetics and CRISPR: A New Relationship Built to Last.

blue cyan red Cryptochromes Fluorescent proteins LOV domains Phytochromes Review
Methods Mol Biol, 11 Jul 2020 DOI: 10.1007/978-1-0716-0755-8_18 Link to full text
Abstract: Since the breakthrough discoveries that CRISPR-Cas9 nucleases can be easily programmed and employed to induce targeted double-strand breaks in mammalian cells, the gene editing field has grown exponentially. Today, CRISPR technologies based on engineered class II CRISPR effectors facilitate targeted modification of genes and RNA transcripts. Moreover, catalytically impaired CRISPR-Cas variants can be employed as programmable DNA binding domains and used to recruit effector proteins, such as transcriptional regulators, epigenetic modifiers or base-modifying enzymes, to selected genomic loci. The juxtaposition of CRISPR and optogenetics enables spatiotemporally confined and highly dynamic genome perturbations in living cells and animals and holds unprecedented potential for biology and biomedicine.Here, we provide an overview of the state-of-the-art methods for light-control of CRISPR effectors. We will detail the plethora of exciting applications enabled by these systems, including spatially confined genome editing, timed activation of endogenous genes, as well as remote control of chromatin-chromatin interactions. Finally, we will discuss limitations of current optogenetic CRISPR tools and point out routes for future innovation in this emerging field.
34.

Engineering a far-red light–activated split-Cas9 system for remote-controlled genome editing of internal organs and tumors.

red BphS HEK293 mouse in vivo Nucleic acid editing
Sci Adv, 10 Jul 2020 DOI: 10.1126/sciadv.abb1777 Link to full text
Abstract: It is widely understood that CRISPR-Cas9 technology is revolutionary, with well-recognized issues including the potential for off-target edits and the attendant need for spatiotemporal control of editing. Here, we describe a far-red light (FRL)–activated split-Cas9 (FAST) system that can robustly induce gene editing in both mammalian cells and mice. Through light-emitting diode–based FRL illumination, the FAST system can efficiently edit genes, including nonhomologous end joining and homology-directed repair, for multiple loci in human cells. Further, we show that FAST readily achieves FRL-induced editing of internal organs in tdTomato reporter mice. Finally, FAST was demonstrated to achieve FRL-triggered editing of the PLK1 oncogene in a mouse xenograft tumor model. Beyond extending the spectrum of light energies in optogenetic toolbox for CRISPR-Cas9 technologies, this study demonstrates how FAST system can be deployed for programmable deep tissue gene editing in both biological and biomedical contexts toward high precision and spatial specificity.
35.

Light-powered Escherichia coli cell division for chemical production.

blue red BphS EL222 E. coli Cell cycle control Endogenous gene expression Immediate control of second messengers Multichromatic
Nat Commun, 8 May 2020 DOI: 10.1038/s41467-020-16154-3 Link to full text
Abstract: Cell division can perturb the metabolic performance of industrial microbes. The C period of cell division starts from the initiation to the termination of DNA replication, whereas the D period is the bacterial division process. Here, we first shorten the C and D periods of E. coli by controlling the expression of the ribonucleotide reductase NrdAB and division proteins FtsZA through blue light and near-infrared light activation, respectively. It increases the specific surface area to 3.7 μm-1 and acetoin titer to 67.2 g·L-1. Next, we prolong the C and D periods of E. coli by regulating the expression of the ribonucleotide reductase NrdA and division protein inhibitor SulA through blue light activation-repression and near-infrared (NIR) light activation, respectively. It improves the cell volume to 52.6 μm3 and poly(lactate-co-3-hydroxybutyrate) titer to 14.31 g·L-1. Thus, the optogenetic-based cell division regulation strategy can improve the efficiency of microbial cell factories.
36.

Optogenetic modulation of a catalytic biofilm for biotransformation of indole into tryptophan.

red BphS E. coli Immediate control of second messengers
ChemSusChem, 16 Oct 2019 DOI: 10.1002/cssc.201902413 Link to full text
Abstract: In green chemical synthesis, biofilms as biocatalysts have shown great promise. Efficient biofilm-mediated biocatalysis requires the modulation of biofilm formation. Optogenetic tools are ideal for controlling biofilms, as light is non-invasive, easily controllable and cost-efficient. In this study, we employed a near infrared (NIR) light-responsive gene circuit to modulate the cellular level of c-di-GMP, a central regulator of the prokaryote biofilm lifestyle, which allows us to regulate biofilm formation using NIR light. By applying the engineered biofilm to catalyze the biotransformation of indole into tryptophan in submerged biofilm reactors, we showed that NIR light enhanced biofilm formation to result in ~ 30% increase in tryptophan yield, which demonstrates the feasibility of applying light to modulate the formation and performance of catalytic biofilms for chemical production. The c-di-GMP targeted optogenetic approach for modulating catalytic biofilm we have demonstrated here would allow the wide application for further biofilm-mediated biocatalysis.
37.

Bacteriophytochromes - from informative model systems of phytochrome function to powerful tools in cell biology.

blue near-infrared red LOV domains Phytochromes Review
Curr Opin Struct Biol, 14 Mar 2019 DOI: 10.1016/j.sbi.2019.02.005 Link to full text
Abstract: Bacteriophytochromes are a subfamily of the diverse light responsive phytochrome photoreceptors. Considering their preferential interaction with biliverdin IXα as endogenous cofactor, they have recently been used for creating optogenetic tools and engineering fluorescent probes. Ideal absorption characteristics for the activation of bacteriophytochrome-based systems in the therapeutic near-infrared window as well the availability of biliverdin in mammalian tissues have resulted in tremendous progress in re-engineering bacteriophytochromes for diverse applications. At the same time, both the structural analysis and the functional characterization of diverse naturally occurring bacteriophytochrome systems have unraveled remarkable differences in signaling mechanisms and have so far only touched the surface of the evolutionary diversity within the family of bacteriophytochromes. This review highlights recent findings and future challenges.
38.

Engineering a light-responsive, quorum quenching biofilm to mitigate biofouling on water purification membranes.

blue red BphS EB1 E. coli Control of cell-cell / cell-material interactions Immediate control of second messengers Multichromatic
Sci Adv, 7 Dec 2018 DOI: 10.1126/sciadv.aau1459 Link to full text
Abstract: Quorum quenching (QQ) has been reported to be a promising approach for membrane biofouling control. Entrapment of QQ bacteria in porous matrices is required to retain them in continuously operated membrane processes and to prevent uncontrollable biofilm formation by the QQ bacteria on membrane surfaces. It would be more desirable if the formation and dispersal of biofilms by QQ bacteria could be controlled so that the QQ bacterial cells are self-immobilized, but the QQ biofilm itself still does not compromise membrane performance. In this study, we engineered a QQ bacterial biofilm whose growth and dispersal can be modulated by light through a dichromatic, optogenetic c-di-GMP gene circuit in which the bacterial cells sense near-infrared (NIR) light and blue light to adjust its biofilm formation by regulating the c-di-GMP level. We also demonstrated the potential application of the engineered light-responsive QQ biofilm in mitigating biofouling of water purification forward osmosis membranes. The c-di-GMP-targeted optogenetic approach for controllable biofilm development we have demonstrated here should prove widely applicable for designing other controllable biofilm-enabled applications such as biofilm-based biocatalysis.
39.

Optogenetic Medicine: Synthetic Therapeutic Solutions Precision-Guided by Light.

blue cyan green near-infrared red UV Cobalamin-binding domains Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Cold Spring Harb Perspect Med, 5 Oct 2018 DOI: 10.1101/cshperspect.a034371 Link to full text
Abstract: Gene- and cell-based therapies are well recognized as central pillars of next-generation medicine, but controllability remains a critical issue for clinical applications. In this context, optogenetics is opening up exciting new opportunities for precision-guided medicine by using illumination with light of appropriate intensity and wavelength as a trigger signal to achieve pinpoint spatiotemporal control of cellular activities, such as transgene expression. In this review, we highlight recent advances in optogenetics, focusing on devices for biomedical applications. We introduce the construction and applications of optogenetic-based biomedical tools to treat neurological diseases, diabetes, heart diseases, and cancer, as well as bioelectronic implants that combine light-interfaced electronic devices and optogenetic systems into portable personalized precision bioelectronic medical tools. Optogenetics-based technology promises the capability to achieve traceless, remotely controlled precision dosing of an enormous range of therapeutic outputs. Finally, we discuss the prospects for optogenetic medicine, as well as some emerging challenges.
40.

Illuminating pathogen-host intimacy through optogenetics.

blue red BLUF domains Cryptochromes LOV domains Phytochromes Review
PLoS Pathog, 12 Jul 2018 DOI: 10.1371/journal.ppat.1007046 Link to full text
Abstract: The birth and subsequent evolution of optogenetics has resulted in an unprecedented advancement in our understanding of the brain. Its outstanding success does usher wider applications; however, the tool remains still largely relegated to neuroscience. Here, we introduce selected aspects of optogenetics with potential applications in infection biology that will not only answer long-standing questions about intracellular pathogens (parasites, bacteria, viruses) but also broaden the dimension of current research in entwined models. In this essay, we illustrate how a judicious integration of optogenetics with routine methods can illuminate the host-pathogen interactions in a way that has not been feasible otherwise.
41.

Synthetic far-red light-mediated CRISPR-dCas9 device for inducing functional neuronal differentiation.

blue red BphS CRY2/CIB1 HEK293 mouse in vivo Cell differentiation Endogenous gene expression Immediate control of second messengers
Proc Natl Acad Sci USA, 2 Jul 2018 DOI: 10.1073/pnas.1802448115 Link to full text
Abstract: The ability to control the activity of CRISPR-dCas9 with precise spatiotemporal resolution will enable tight genome regulation of user-defined endogenous genes for studying the dynamics of transcriptional regulation. Optogenetic devices with minimal phototoxicity and the capacity for deep tissue penetration are extremely useful for precise spatiotemporal control of cellular behavior and for future clinic translational research. Therefore, capitalizing on synthetic biology and optogenetic design principles, we engineered a far-red light (FRL)-activated CRISPR-dCas9 effector (FACE) device that induces transcription of exogenous or endogenous genes in the presence of FRL stimulation. This versatile system provides a robust and convenient method for precise spatiotemporal control of endogenous gene expression and also has been demonstrated to mediate targeted epigenetic modulation, which can be utilized to efficiently promote differentiation of induced pluripotent stem cells into functional neurons by up-regulating a single neural transcription factor, NEUROG2 This FACE system might facilitate genetic/epigenetic reprogramming in basic biological research and regenerative medicine for future biomedical applications.
42.

Bioprinting Living Biofilms through Optogenetic Manipulation.

blue red BlrP1 BphS P. aeruginosa Control of cell-cell / cell-material interactions Immediate control of second messengers Multichromatic
ACS Synth Biol, 18 Apr 2018 DOI: 10.1021/acssynbio.8b00003 Link to full text
Abstract: In this paper, we present a new strategy for microprinting dense bacterial communities with a prescribed organization on a substrate. Unlike conventional bioprinting techniques that require bioinks, through optogenetic manipulation, we directly manipulated the behaviors of Pseudomonas aeruginosa to allow these living bacteria to autonomically form patterned biofilms following prescribed illumination. The results showed that through optogenetic manipulation, patterned bacterial communities with high spatial resolution (approximately 10 μm) could be constructed in 6 h. Thus, optogenetic manipulation greatly increases the range of available bioprinting techniques.
43.

Optogenetics reprogramming of planktonic cells for biofilm formation.

red BphS P. aeruginosa Control of cytoskeleton / cell motility / cell shape Control of cell-cell / cell-material interactions Immediate control of second messengers
bioRxiv, 4 Dec 2017 DOI: 10.1101/229229 Link to full text
Abstract: Single-cell behaviors play essential roles during early-stage biofilms formation. In this study, we evaluated whether biofilm formation could be guided by precisely manipulating single cells behaviors. Thus, we established an illumination method to precisely manipulate the type IV pili (TFP) mediated motility and microcolony formation of Pseudomonas aeruginosa by using a combination of a high-throughput bacterial tracking algorithm, optogenetic manipulation and adaptive microscopy. We termed this method as Adaptive Tracking Illumination (ATI). We reported that ATI enables the precise manipulation of TFP mediated motility and microcolony formation during biofilm formation by manipulating bis-(3′-5′)-cyclic dimeric guanosine monophosphate (c-di-GMP) levels in single cells. Moreover, we showed that the spatial organization of single cells in mature biofilms can be controlled using ATI. Thus, the established method (i.e., ATI) can markedly promote ongoing studies of biofilms.
44.

Using Light-Activated Enzymes for Modulating Intracellular c-di-GMP Levels in Bacteria.

blue red BphS EB1 A. brasilense E. coli Multichromatic
Methods Mol Biol, 10 Sep 2017 DOI: 10.1007/978-1-4939-7240-1_14 Link to full text
Abstract: Signaling pathways involving second messenger c-di-GMP regulate various aspects of bacterial physiology and behavior. We describe the use of a red light-activated diguanylate cyclase (c-di-GMP synthase) and a blue light-activated c-di-GMP phosphodiesterase (hydrolase) for manipulating intracellular c-di-GMP levels in bacterial cells. We illustrate the application of these enzymes in regulating several c-di-GMP-dependent phenotypes, i.e., motility and biofilm phenotypes in E. coli and chemotactic behavior in the alphaproteobacterium Azospirillum brasilense. We expect these light-activated enzymes to be also useful in regulating c-di-GMP-dependent processes occurring at the fast timescale, for spatial control of bacterial populations, as well as for analyzing c-di-GMP-dependent phenomena at the single-cell level.
45.

Distinctive Properties of Dark Reversion Kinetics between Two Red/Green-Type Cyanobacteriochromes and their Application in the Photoregulation of cAMP Synthesis.

red Phytochromes Background
Photochem Photobiol, May 2017 DOI: 10.1111/php.12732 Link to full text
Abstract: Cyanobacteriochromes (CBCRs) are photoreceptors that bind to a linear tetrapyrrole within a conserved cGMP-phosphodiesterase/adenylate cyclase/FhlA (GAF) domain and exhibit reversible photoconversion. Red/green-type CBCR GAF domains that photoconvert between red- (Pr) and green-absorbing (Pg) forms occur widely in various cyanobacteria. A putative phototaxis regulator, AnPixJ, contains multiple red/green-type CBCR GAF domains. We previously reported that AnPixJ's second domain (AnPixJg2) but not its fourth domain (AnPixJg4) shows red/green reversible photoconversion. Herein, we found that AnPixJg4 showed Pr-to-Pg photoconversion and rapid Pg-to-Pr dark reversion, whereas AnPixJg2 showed a barely detectable dark reversion. Site-directed mutagenesis revealed the involvement of six residues in Pg stability. Replacement at the Leu294/Ile660 positions of AnPixJg2/AnPixJg4 showed the highest influence on dark reversion kinetics. AnPixJg2_DR6, wherein the six residues of AnPixJg2 were entirely replaced with those of AnPixJg4, showed a 300-fold faster dark reversion than that of the wild type. We constructed chimeric proteins by fusing the GAF domains with adenylate cyclase catalytic regions, such as AnPixJg2-AC, AnPixJg4-AC and AnPixJg2_DR6-AC. We detected successful enzymatic activation under red light for both AnPixJg2-AC and AnPixJg2_DR6-AC, and repression under green light for AnPixJg2-AC and under dark incubation for AnPixJg2_DR6-AC. These results provide platforms to develop cAMP synthetic optogenetic tools.
46.

Smartphone-controlled optogenetically engineered cells enable semiautomatic glucose homeostasis in diabetic mice.

red BphS Hana3A HEK293A HeLa hMSCs mouse in vivo Neuro-2a Transgene expression Immediate control of second messengers
Sci Transl Med, 26 Apr 2017 DOI: 10.1126/scitranslmed.aal2298 Link to full text
Abstract: With the increasingly dominant role of smartphones in our lives, mobile health care systems integrating advanced point-of-care technologies to manage chronic diseases are gaining attention. Using a multidisciplinary design principle coupling electrical engineering, software development, and synthetic biology, we have engineered a technological infrastructure enabling the smartphone-assisted semiautomatic treatment of diabetes in mice. A custom-designed home server SmartController was programmed to process wireless signals, enabling a smartphone to regulate hormone production by optically engineered cells implanted in diabetic mice via a far-red light (FRL)-responsive optogenetic interface. To develop this wireless controller network, we designed and implanted hydrogel capsules carrying both engineered cells and wirelessly powered FRL LEDs (light-emitting diodes). In vivo production of a short variant of human glucagon-like peptide 1 (shGLP-1) or mouse insulin by the engineered cells in the hydrogel could be remotely controlled by smartphone programs or a custom-engineered Bluetooth-active glucometer in a semiautomatic, glucose-dependent manner. By combining electronic device-generated digital signals with optogenetically engineered cells, this study provides a step toward translating cell-based therapies into the clinic.
47.

Optogenetic Module for Dichromatic Control of c-di-GMP Signaling.

blue red BphS EB1 E. coli in vitro Immediate control of second messengers Multichromatic
J Bacteriol, 20 Mar 2017 DOI: 10.1128/jb.00014-17 Link to full text
Abstract: Many aspects of bacterial physiology and behavior including motility, surface attachment, and cell cycle, are controlled by the c-di-GMP-dependent signaling pathways on the scale of seconds-to-minutes. Interrogation of such processes in real time requires tools for introducing rapid and reversible changes in intracellular c-di-GMP levels. Inducing expression of genes encoding c-di-GMP synthetic (diguanylate cyclases) and degrading (c-di-GMP phosphodiesterase) enzymes by chemicals may not provide adequate temporal control. In contrast, light-controlled diguanylate cyclases and phosphodiesterases can be quickly activated and inactivated. A red/near-infrared light-regulated diguanylate cyclase, BphS, has been engineered earlier, yet a complementary light-activated c-di-GMP phosphodiesterase has been lacking. In search of such a phosphodiesterase, we investigated two homologous proteins from Allochromatium vinosum and Magnetococcus marinus, designated BldP, which contain C-terminal EAL-BLUF modules, where EAL is a c-di-GMP phosphodiesterase domain and BLUF is a blue light sensory domain. Characterization of the BldP proteins in Escherichia coli and in vitro showed that they possess light-activated c-di-GMP phosphodiesterase activities. Interestingly, light activation in both enzymes was dependent on oxygen levels. The truncated EAL-BLUF fragment from A. vinosum BldP lacked phosphodiesterase activity, whereas a similar fragment from M. marinus BldP, designated EB1, possessed such activity that was highly (>30-fold) upregulated by light. Following light withdrawal, EB1 reverted to the inactive ground state with a half-life of ∼6 min. Therefore, the blue light-activated phosphodiesterase, EB1, can be used in combination with the red/near-infrared light-regulated diguanylate cyclase, BphS, for bidirectional regulation of c-di-GMP-dependent processes in E. coli as well as other bacterial and nonbacterial cells.IMPORTANCE Regulation of motility, attachment to surfaces, cell cycle, and other bacterial processes controlled by the c-di-GMP signaling pathways occurs at a fast (seconds-to-minutes) pace. Interrogating these processes at high temporal and spatial resolution using chemicals is difficult-to-impossible, while optogenetic approaches may prove useful. We identified and characterized a robust, blue light-activated c-di-GMP phosphodiesterase (hydrolase) that complements a previously engineered red/near-infrared light-regulated diguanylate cyclase (c-di-GMP synthase). These two enzymes form a dichromatic module for manipulating intracellular c-di-GMP levels in bacterial and nonbacterial cells.
48.

Optogenetic manipulation of c-di-GMP levels reveals the role of c-di-GMP in regulating aerotaxis receptor activity in Azospirillum brasilense.

blue red BphS EB1 A. brasilense Immediate control of second messengers Multichromatic
J Bacteriol, 6 Mar 2017 DOI: 10.1128/jb.00020-17 Link to full text
Abstract: Bacterial chemotaxis receptors provide the sensory inputs that inform the direction of navigation in changing environments. Recently, we described the bacterial second messenger, c-di-GMP, as a novel regulator of a subclass of chemotaxis receptors. In Azospirillum brasilense, c-di-GMP binds to a chemotaxis receptor, Tlp1, and modulates its signaling function during aerotaxis. Here, we further characterize the role of c-di-GMP in aerotaxis using a novel dichromatic optogenetic system engineered for manipulating intracellular c-di-GMP levels in real time. This system comprises a red/near-infrared light-regulated diguanylate cyclase and a blue-light regulated c-di-GMP phosphodiesterase. It allows generation of transient changes in intracellular c-di-GMP concentrations within seconds of irradiation with appropriate light, which is compatible with the timescale of chemotaxis signaling. We provide experimental evidence that c-di-GMP binding to the Tlp1 receptor activates its signaling function during aerotaxis, which supports the role of transient changes in c-di-GMP levels as a means of adjusting the response of A. brasilense to oxygen gradients. We also show that intracellular c-di-GMP levels in A. brasilense changes with carbon metabolism. Our data support a model whereby c-di-GMP functions to imprint chemotaxis receptors with a record of recent metabolic experience, to adjust their contribution to the signaling output, thus allowing the cells to continually fine-tune chemotaxis sensory perception to their metabolic state.IMPORTANCE Motile bacteria use chemotaxis to change swimming direction in response to changes in environmental conditions. Chemotaxis receptors sense environmental signals and relay sensory information to the chemotaxis machinery, which ultimately controls the swimming pattern of cells. In bacteria studied to date, differential methylation has been known as a mechanism to control the activity of chemotaxis receptors and modulates their contribution to the overall chemotaxis response. Here, we used an optogenetic system to perturb intracellular concentrations of the bacterial second messenger, c-di-GMP, to show that in some chemotaxis receptors, c-di-GMP functions in a similar feedback loop to connect metabolic status of the cells to sensory activity of chemotaxis receptors.
49.

Near-infrared light responsive synthetic c-di-GMP module for optogenetic applications.

red BphG BphS E. coli in vitro Immediate control of second messengers
ACS Synth Biol, 28 Jan 2014 DOI: 10.1021/sb400182x Link to full text
Abstract: Enormous potential of cell-based therapeutics is hindered by the lack of effective means to control genetically engineered cells in mammalian tissues. Here, we describe a synthetic module for remote photocontrol of engineered cells that can be adapted for such applications. The module involves photoactivated synthesis of cyclic dimeric GMP (c-di-GMP), a stable small molecule that is not produced by higher eukaryotes and therefore is suitable for orthogonal regulation. The key component of the photocontrol module is an engineered bacteriophytochrome diguanylate cyclase, which synthesizes c-di-GMP from GTP in a light-dependent manner. Bacteriophytochromes are particularly attractive photoreceptors because they respond to light in the near-infrared window of the spectrum, where absorption by mammalian tissues is minimal, and also because their chromophore, biliverdin IXα, is naturally available in mammalian cells. The second component of the photocontrol module, a c-di-GMP phosphodiesterase, maintains near-zero background levels of c-di-GMP in the absence of light, which enhances the photodynamic range of c-di-GMP concentrations. In the E. coli model used in this study, the intracellular c-di-GMP levels could be upregulated by light by >50-fold. Various c-di-GMP-responsive proteins and riboswitches identified in bacteria can be linked downstream of the c-di-GMP-mediated photocontrol module for orthogonal regulation of biological activities in mammals as well as in other organisms lacking c-di-GMP signaling. Here, we linked the photocontrol module to a gene expression output via a c-di-GMP-responsive transcription factor and achieved a 40-fold photoactivation of gene expression.
50.

Red/green cyanobacteriochromes: sensors of color and power.

red Phytochromes Background
Biochemistry, 21 Nov 2012 DOI: 10.1021/bi3013565 Link to full text
Abstract: Phytochromes are red/far-red photoreceptors using cysteine-linked linear tetrapyrrole (bilin) chromophores to regulate biological responses to light. Light absorption triggers photoisomerization of the bilin between the 15Z and 15E photostates. The related cyanobacteriochromes (CBCRs) extend the photosensory range of the phytochrome superfamily to shorter wavelengths of visible light. Several subfamilies of CBCRs have been described. Representatives of one such subfamily, including AnPixJ and NpR6012g4, exhibit red/green photocycles in which the 15Z photostate is red-absorbing like that of phytochrome but the 15E photoproduct is instead green-absorbing. Using recombinant expression of individual CBCR domains in Escherichia coli, we fully survey the red/green subfamily from the cyanobacterium Nostoc punctiforme. In addition to 14 new photoswitching CBCRs, one apparently photochemically inactive protein exhibiting intense red fluorescence was observed. We describe a novel orange/green photocycle in one of these CBCRs, NpF2164g7. Dark reversion varied in this panel of CBCRs; some examples were stable as the 15E photoproduct for days, while others reverted to the 15Z dark state in minutes or even seconds. In the case of NpF2164g7, dark reversion was so rapid that reverse photoconversion of the green-absorbing photoproduct was not significant in restoring the dark state, resulting in a broadband response to light. Our results demonstrate that red/green CBCRs can thus act as sensors for the color or intensity of the ambient light environment.
Submit a new publication to our database